3,831 research outputs found

    In-situ laser retorting of oil shale

    Get PDF
    Oil shale formations are retorted in situ and gaseous hydrocarbon products are recovered by drilling two or more wells into an oil shale formation underneath the surface of the ground. A high energy laser beam is directed into the well and fractures the region of the shale formation. A compressed gas is forced into the well that supports combustion in the flame front ignited by the laser beam, thereby retorting the oil shale. Gaseous hydrocarbon products which permeate through the fractured region are recovered from one of the wells that were not exposed to the laser system

    Coal gasifier cogeneration powerplant project

    Get PDF
    Industrial cogeneration and utility pr systems were analyzed and a conceptual design study was conducted to evaluate the economic feasibility of a coal gasifier power plant for NASA Lewis Research Center. Site location, plant size, and electric power demand were considered in criteria developed for screening and selecting candidates that could use a wide variety of coals, including that from Ohio. A fluidized bed gasifier concept was chosen as the baseline design and key components of the powerplant were technically assessed. No barriers to environmental acceptability are foreseen. If funded, the powerplant will not only meet the needs of the research center, but will reduce the commercial risk for utilities and industries by fully verifying and demonstrating the technology, thus accelerating commercialization

    The NASA-Lewis/ERDA solar heating and cooling technology program

    Get PDF
    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions

    Technical and economic feasibility study of solar/fossil hybrid power systems

    Get PDF
    Results show that new hybrid systems utilizing fossil fuel augmentation of solar energy can provide significant capital and energy cost benefits when compared with solar thermal systems requiring thermal storage. These benefits accrue from a reduction of solar collection area that results from both the use of highly efficient gas and combined cycle energy conversion subsystems and elimination of the requirement for long-term energy storage subsystems. Technical feasibility and fuel savings benefits of solar hybrid retrofit to existing fossil-fired, gas and vapor cycle powerplants was confirmed; however, economic viability of steam cycle retrofit was found to be dependent on the thermodynamic and operational characteristics of the existing powerplant

    Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    Get PDF
    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs

    Reliability and mass analysis of dynamic power conversion systems with parallel of standby redundancy

    Get PDF
    A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K

    Work-rate of substitutes in elite soccer: A preliminary study

    Get PDF
    The aim of this study was to investigate the work-rate of substitutes in professional soccer. A computerised player tracking system was used to assess the work-rates of second-half substitutes (11 midfielders and 14 forwards) in a French Ligue 1 club. Total distance, distance covered in five categories of movement intensity and recovery time between high-intensity efforts were evaluated. First- and second-half work-rates of the replaced players were compared. The performance of substitutes was compared to that of the players they replaced, to team-mates in the same position who remained on the pitch after the substitution and in relation to their habitual performances when starting games. No differences in work-rate between first- and second-halves were observed in all players who were substituted. In the second-half, a non-significant trend was observed in midfield substitutes who covered greater distances than the player they replaced whereas no differences were observed in forwards. Midfield substitutes covered a greater overall distance and distance at high-intensities (p<0.01) and had a lower recovery time between high-intensity efforts (p<0.01) compared to other midfield team-mates who remained on the pitch. Forwards covered less distance (p<0.01) in their first 10-minutes as a substitute compared to their habitual work-rate profile in the opening 10-minutes when starting matches while this finding was not observed in midfielders. These findings suggest that compared to midfield substitutes, forward substitutes did not utilise their full physical potential. Further investigation is warranted into the reasons behind this finding in order to optimise the work-rate contributions of forward substitutes

    Epigenetic modifications may play a role in the developmental consequences of early life events

    Get PDF
    Many aspects of postnatal development are influenced by events before birth, including cognitive and language development. An adverse intrauterine environment, for example secondary to poor maternal nutritional status, multiple pregnancy, or late preterm birth, is associated with increased risks of delayed or impaired childhood development and altered physiology in adulthood that may predispose to increased risk of adult disease. Maternal periconceptional undernutrition and twin conception can both result in late preterm birth, but it is less clear whether cases of late preterm birth not following a recognized early pregnancy event may still have their origin in the periconceptional period. Thus, the very earliest periods of pregnancy, and perhaps even the pre-pregnancy period, may be an important period determining the developmental trajectory of the fetus, and thus both pregnancy and later health outcomes. Profound epigenetic modifications to the genome occur in the early embryo as a normal part of development. Recent evidence suggests that environmental signals acting during early development may also result in epigenetic changes which may play a role in mediating the association between early life exposures and later phenotype
    • …
    corecore